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Abstract  

Background: Increasingly, there is a move toward using in vitro toxicity testing for assessment 

of human health risk by chemicals. As with in vivo toxicity testing, an important question for in 

vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations 

may show consistency with thresholds, but the main evidence has to come from mechanistic 

considerations. 

Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the 

cell and the manner in which chemicals perturb these circuits. Understanding circuit structures 

that are inherently capable of resisting small perturbations and producing threshold responses is 

an important step towards mechanistically interpreting in vitro testing data. 

Methods: Here we have examined dose-response characteristics for several biochemical network 

motifs. These network motifs are basic building blocks of molecular circuits underpinning a 

variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and 

apoptosis. For each motif, we present biological examples and models to illustrate how 

thresholds arise from specific network structures. 

Discussion and Conclusion: Integral feedback, feedforward and transcritical bifurcation motifs 

can generate thresholds. Other motifs, e.g., proportional feedback and ultrasensitivity, produce 

responses where the slope in the low-dose region is small and stays close to the baseline. 

Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that 

network motifs provide a basis for understanding thresholds for cellular responses. 

Computational pathway modeling of these motifs and their combinations occurring in molecular 

signaling networks will be a key element in new risk assessment approaches based on in vitro 

cellular assays. 
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Introduction  

Quantitative human health risk assessment for environmental toxicants requires accurate dose-

response information on relevant endpoints. Dose-response studies with animals, tissues, and 

cells can examine diverse endpoints. However, scientists in the toxicology and risk assessment 

community are still at odds over the issue of whether threshold doses exist for adverse responses 

(Crawford and Wilson 1996; Crump et al. 1976; Piersma et al. 2011; Rhomberg et al. 2011). The 

debate on the existence of a threshold dose – doses below which there is no increase in an 

adverse response, and above which the adverse response increases – has important implications 

for risk assessment. Absent solid scientific backing for the shape of dose response curves, 

particularly in the low-dose region, government agencies use linear non-threshold extrapolation 

models as default risk assessment tools (NRC 2009). 

Two issues are at the basis of the current challenges in providing convincing evidence for 

thresholds. First, it is difficult, if not impossible, to identify thresholds with certainty from 

experimental dose-response data alone. While statistical tools can determine responses that are 

significantly different from the non-exposed control, lack of statistical significance between 

treated and control groups may arise from relatively small sample size and experimental 

variability rather than absence of actual change in response (Crump 2011; Lovell 2000). These 

statistical challenges are present when analyzing both in vivo and in vitro toxicity data (Crump et 

al. 2010). The second issue lies in our poor understanding of the mechanistic underpinnings of 

biological thresholds. One commonly voiced argument for thresholds is the capability of 

homeostasis that makes a biological system resilient to small perturbations before breaking down 

(Piersma et al. 2011). There are also arguments for dose-response behaviors based on specific 

modes of action. For instance, genotoxic chemicals are thought to be low-dose linear since they 

4
 



 

 

    

              

              

        

           

        

         

       

         

          

     

      

       

   

        

           

add  an increment  of  DNA  damage  over background; conversely, others  in the  toxicology 

community argue  that  nongenotoxic  carcinogens  have  thresholds  because  they act  through 

modes  of  action related to receptor  activation or regenerative  hyperplasia  (USEPA  1986, 2005).  

For endocrine  disrupting chemicals, some  have  argued for thresholds  based on the  notion that  

biological  systems  have  to be  able  to distinguish bona  fide  hormone  signals  from  similarly-

structured background endogenous  and exogenous  molecules  (Borgert  et  al. 2013).  These  broad 

arguments do not provide a compelling mechanistic understanding for threshold behaviors.    

Lutz et al. developed a statistical curve-fitting approach which adopts a hockey-stick threshold 

model once a linear model is rejected (Lutz and Lutz 2009). But as these authors point out, there 

is a great deal of uncertainty regarding the curvature in the low-dose region when one attempts to 

infer a threshold from dose-response data. No matter how strongly the dose-response data may 

appear to favor a threshold, the true curve can have several possible shapes that are quantitatively 

similar but qualitatively different (Figure 1). The curvature can be: (a) monotonically increasing 

but staying close to the control baseline (Figure 1A); (b) superimposed on the baseline, 

representing a true threshold response (Figure 1B); or (c) non-monotonic, i.e., first decreasing 

then increasing (hormetic, Figure 1C). These curves are not easily distinguishable with routine 

curve fitting algorithms (Lovell 2000). The statistically best-fit curve is not necessarily the true 

description of the response profile due to variability, sampling bias, and measurement errors. 

Although empirical dose-response curves are essential for examining low-dose behaviors, 

optimally, the evidence for thresholds also needs to consider the primary biological mechanisms 

governing both control and treated responses (Edler and Kopp-Schneider 1998; Rhomberg et al. 

2011). To do this we need to consider biological systems – cells, tissues, and organisms – as 

dynamic systems. The biology of the intrinsic control processes determines both the maintenance 
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of  the  baseline-level  responses  and  the  dynamics  of  the  responses  to external  perturbations.  The  

molecular  control  networks  operating in cells, organs, and whole  organisms  to maintain 

homeostasis  are  particularly important.  Molecular and cellular systems  biology-based 

investigations  have  begun to map  out  details  of  the  intracellular protein and gene  networks  

mediating  adverse  responses  of  chemical  perturbations  (Caron et  al. 2010; Oda  and Kitano 

2006).  Physicists, mathematicians  and biomedical  engineers  have  also made  valuable  

contributions  to the  field of  systems  biology,  bringing  new  perspectives  to the  quantitative  

understanding of  molecular  pathways  and networks  that  control  cellular responses  to various  

stressors (Alon 2006 ; Tyson et al. 2003).  

At the same time, new toxicity testing initiatives have arisen because of concerns for the 

humane use of animals and the failure of conventional animal-based toxicity studies to keep pace 

with studying the large number of chemicals in commerce and new chemical products coming to 

market (NRC 2007; SEURAT 2012). These initiatives propose use of in vitro cellular systems 

based on perturbations of toxicity pathways. Toxicity pathways – which are pre-existing protein 

and gene networks that when sufficiently perturbed by chemicals can lead to adverse health 

outcomes – can be examined in great detail with modern high-throughput molecular techniques. 

These toxicity pathways link molecular initiating events on to modes-of-action and adverse 

outcome pathways (Ankley et al. 2010; Vinken 2013). 

This article presents an overview of basic molecular network structures in the context of 

threshold behaviors. These structures, known as “network motifs”, are fundamental building 

blocks of large, integrated signaling (toxicity) pathways. These motifs are more than theoretical 

concepts. They are ubiquitous in all biological signaling and control systems. They are necessary 

for the integrity and normal functioning of cells in response to physiological signals and in the 
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face  of  environmental  fluctuations. These  motifs  form  the  basis  of  the  circuits  underpinning 

integrated cellular functions, including adaptation, homeostasis, proliferation,  differentiation, and 

apoptosis  (Alon 2007; Tyson and Novak 2010; Zhang et  al. 2013a).  In this  article  we  illustrate  

the  structures  of  these  network  motifs,  examine  the  implications  for  dose  responses  in the  low-

dose region, and discuss the functional contexts in which these motif    s operate.    

Network Motifs  and Threshold Responses  

Human intuition for thresholds comes primarily from our everyday experience with the 

surrounding physical world, e.g., the requirement for a certain amount of force to turn on a light 

switch. In contrast to mechanical thresholds, the manner in which thresholds arise for the 

molecular signaling pathways and networks that underlie cellular responses is less intuitive. 

According to mass action, the strength of initial interaction between a chemical and its direct 

molecular target is proportional to the free concentrations of the reactants. A suite of subsequent 

biochemical processes can transform these linear molecular initiating events into responses that 

may or may not have thresholds. 

Increasingly, biologists and biomedical engineers regard biological responses in terms of 

systems-level behaviors of dynamic networks. In this section, we examine network motifs that 

generate dose-response profiles similar to those in Figure 1. We will first describe common 

network motifs underlying cellular adaptation and homeostasis. These motifs utilize negative 

feedback and incoherent feedforward loops. We then draw on the concept of bifurcations from 

dynamic systems theory to illustrate several threshold mechanisms, including saddle-node 

bifurcations, transcritical bifurcations, and supercritical pitchfork bifurcations. Finally, we use 

molecular titration to examine dose responses expected for certain “ultrasensitive” motifs. For 

each motif, we present an intuitive explanation for its dose-response behavior, give relevant 
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biological  examples  and discuss  the  functional  context  in which they operate. For more  

quantitatively oriented  readers, we  also provide, in Supplemental  Material, mathematical  models  

to illustrate  the  underlying kinetics  that  govern the  dose-response  behaviors  imparted by these  

motifs. These  models are available in SBML format    in  Supplemental Material.   

Homeostatic network motifs  

One of the most vital properties of biological organisms is homeostasis, i.e., the ability to 

resist/adapt to moderate levels of external perturbations and maintain a relatively stable internal 

environment. Homeostasis takes place over various levels of biological hierarchy – in cells, 

tissues, organs, and the whole organism. Adaptation and homeostasis are the mechanisms most 

frequently cited in the literature in support of thresholds in biological organisms (Piersma et al. 

2011). Below we illustrate how two common network motifs – negative feedback and incoherent 

feedforward – produce adaptation and homeostasis, and response thresholds. 

 Negative feedback control 

In negative feedback, an undesirable change brought about by a stressor functions as a signal that 

works to restore the system to its original condition. Negative feedback loops are frequently 

encountered in molecular circuits underlying signal attenuation, metabolic control, and most 

relevant to toxicologists, maintenance of cellular homeostasis (Cirit et al. 2010; Novak and 

Tyson 2008; Zhang et al. 2010c). For the latter function, the negative feedback mechanism has 

been primarily studied in relation to gene regulatory networks activated by cellular stresses 

(Zhang and Andersen 2007). Such networks (Figure 2A and 2D) typically contain a master 

transcription factor (T), with an associated sensor molecule that detects changes in certain 

specific cellular states (termed controlled variables here and represented by Y). These cellular 

states could be levels of reactive oxygen species, O2, DNA damage, protein folding, metal ions, 
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or osmolarity (Simmons  et  al. 2009). Once  activated, the  transcription factor induces  a  suite  of  

stress  genes  (collectively represented by G) to counteract  changes  in the  controlled variable  

brought  about  by the  cellular stressor (S). In certain cases, the  controlled variable  directly 

regulates  the  activities  of  the  stress  gene  products  (usually specific  enzymes) in a  

posttranslational  manner, forming a  short  feedback loop that  bypasses  the  transcriptional  control  

(see  Fig 2A  and 2D, dashed lines). Depending on how  the  transcription factor and stress  genes  

respond to changes  in the  controlled variable, the  feedback control  can be  either “proportional”  

or “integral”.  

  Proportional feedback control 

Proportional feedback is a term borrowed from engineering and implies that the output of the 

controller (e.g., the activity of T or G) is proportional to the error signal (e.g., the amount of 

deviation of Y from the baseline level). In a biological setting such a definition can be sometimes 

confusing as Y may activate T or G in a nonlinear manner (Zhang and Andersen 2007). 

Regardless, an important characteristic of this type of feedback control is that the activities of T 

and G are related to the current, rather than the past or projected future value of Y. Conceivably, 

the error signal of Y can be processed through certain signal amplification mechanisms that drive 

a strong induction of the stress gene G, causing the stress-induced departure of Y from the 

baseline to be minimized. Indeed, stress signaling pathways often embed ultrasensitive response 

motifs, which are key network motifs that amplify biochemical signals (Goldbeter and Koshland 

1982, 1984) (see the section of Ultrasensitive Network Motifs for more on ultrasensitivity). With 

strong amplification in the negative feedback loop culminating in high stress-gene induction, the 

perturbation can be nearly completely counteracted. In the continued presence of the stressor, the 

time-course response of the controlled variable would gradually return to the baseline; but it 

would not settle to a steady state that is exactly equal to the original value (Figure 2B). The 
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steady-state  dose-response  curve  in the  low-dose  region can stay  close  to the  baseline  with a  

slope  much smaller than in the  absence  of  feedback (Figure  2C).  As  the  stressor level  increases  

further, causing stress-gene  induction to reach  its limit  (such as  due  to maximal  promoter 

occupancy by the  transcription factor), the  response  profile  of  the  controlled variable  rises  much 

more  steeply (Figure  2C).  A  mathematical  model  illustrating the  dose  response  expected for 

proportional  feedback control  is  provided in Supplemental  Material  (see  Supplemental  Material, 

Proportional Feedback Control).  

Many cellular stress response pathways contain negative feedback loops with multiple 

ultrasensitive motifs embedded along the feedback loops to enhance signal amplification (Zhang 

and Andersen 2007). With the oxidative stress response, activation of the master transcription 

factor Nrf2 by reactive oxygen species occurs through multistep signaling and by transcriptional 

autoregulation, both of which are ultrasensitive in nature (Zhang et al. 2013a; Zhang et al. 

2010c). Many antioxidant enzymes form homodimers or homotetramers after transcriptional 

induction, further increasing signal amplification along the feedback loop (Zhang et al. 2010c). 

With the hypoxic response, ultrasensitive activation of transcription factor HIF-1 by low O2 

occurs through multistep signaling (protein stabilization and transactivation) and molecular 

titration (Schmierer et al. 2010; Semenza 2004). For the heat shock response, ultrasensitive 

motifs increasing loop amplification include homotrimerization of transcription factor HSF1 and 

cooperative binding of the HSF1 trimer to the promoters of heat shock genes (Liu and Thiele 

1999; Xiao et al. 1991). Most of these stress response pathways also involve activation of MAPK 

cascades, a set of well-characterized ultrasensitive signaling motifs (Huang and Ferrell 1996). 

These ultrasensitive processes function collectively to provide a high degree of amplification for 

proportional feedback control. With high amplification, these pathways can produce muted 

steady-state responses between the stressor and the perturbed cellular state (Figure 2C), i.e., the 
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incremental  increase  above  background in the  low-dose  region is  much smaller  compared to  that  

in the absence of feedback control.  

 Integral feedback control 

Integral feedback control is one of the few network topologies that can achieve perfect 

adaptation, where the perturbed state returns exactly to the pre-perturbation state even in the 

continued presence of the stressor (Ma et al. 2009). In contrast to proportional feedback control, 

integral control requires that the output of the controller be related to the time-integral of the 

error signal, i.e., what feeds into the controller is the cumulative past history of the error signal 

rather than the present state of the controlled variable. In the context of the stress signaling 

circuit (Figure 2D), integral feedback control occurs when the activity or abundance of T or G 

depends on the time-integral of the difference of Y from the baseline (ΔY). This integral over 

time is equivalent to the area under the curve (AUC) where the x-axis is time and y-axis is ΔY. 

When the stressor increases causing the controlled variable Y to rise above the baseline, the 

AUC increases leading to induction of stress gene G, which in turn brings Y down. As long as Y 

does not return to the baseline completely, the AUC will continue to increase, causing more 

induction of G, further reducing Y. This adaptive process goes on until Y returns exactly to the 

baseline where the AUC and hence G stay constant (Figure 2E). In this fashion, the integral 

feedback control motif achieves perfect adaptation. This perfect adaptation breaks down when 

the system reaches the point of maximum induction of G, where it exhibits a threshold for Y 

(Figure 2F). A model illustrating how zero-order protein degradation makes a molecular 

integrator and how integral control produces perfect adaptation and well-defined thresholds is 

provided in Supplemental Material (see Supplemental Material, Integral Feedback Control). 
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A  number of  biological  homeostatic  systems  appear to  operate  by integral  feedback control. A 

well-studied example  is  the  yeast  osmotic  stress  response  pathway (Muzzey et  al. 2009). Yeast  

cells  use  membrane  proteins  Sln1  and Sho1  to sense  changes  in cell  volume  and/or membrane  

geometry caused by osmotic  shock. An intracellular signal  transduction cascade, culminating in 

the  activation of  Hog1, a  yeast  homolog of  MAPK,  conveys  stress  signal  downstream,  initiating  

both posttranslational  and transcriptional  regulatory  events  (Mettetal  et  al. 2008). For low-level  

hyperosmotic  stress, a  rapid response  occurs  with Hog1 phosphorylation of  glycerol-synthesizing 

enzymes  such as  Gpd1 in the  cytosol  and of  glycerol  transporter Fps1 on the  cell  membrane. 

Phosphorylation activates  Gpd1 and inhibits  Fps1, leading to rapid  accumulation of  intracellular 

glycerol  to counteract  the  hyperosmotic  stress. In a  second pathway,  high-level  hyperosmotic  

stress  causes  Hog1 to translocate  to the  nucleus  where  it  phosphorylates  transcription factor Hot1 

and activates  an anti-stress  transcriptional  program. Regardless  of  the  pathways  activated, a  

molecular integrator for integral  control  is  located downstream  of  Hog1,  underpinning  the  

perfect  adaptation to osmotic  shock in yeast  (Muzzey et  al. 2009).  Other cellular systems that  

appear to  utilize  integral  feedback control  to achieve  perfect  regulation  are  bacterial  ammonium  

homeostasis  (Kim  et  al. 2012)  and chemotaxis (Yi  et  al. 2000).  At higher biological  organization  

levels, integral  control  underpins  organ  pattern formation  through mechanical  or paracrine  

feedback among  proliferating cells  (Lander 2011; Shraiman 2005),  and  mammalian calcium  and 

glucose  homeostasis  through hormonal  regulation (El-Samad et  al. 2002; Koeslag et  al. 1997; 

Saunders  et  al. 1998).  The  design principles  of  integral  feedback control  for natural  and synthetic  

biological  systems, in consideration of  saturable  enzymatic  removal  of  integrator protein, 

diluting effect  of  cell  growth, and the  scope  of  control  processes, have  been widely studied (Ang 

et al. 2010; Ang and McMillen 2013; Ni et al. 2009).  
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Another network motif that can underpin adaptation and threshold response is incoherent 

feedforward control (Ma et al. 2009). Here we have a control mechanism where the stressor itself 

and the responses activated by the stressor work in concert to mitigate the cellular changes 

caused by the stressor. With this motif, there are sensing mechanisms that detect the presence of 

the stressor itself rather than the deviation of the controlled variable from a set point (Figure 3). 

Here, the feedforward path, S à T à G ─| Y, induces the stress gene G to compensate for 

changes in Y brought about by S. As with feedback control, posttranslational activation of the 

protein product of gene G by S may also occur (Figure 3A, 3D, and 3G dashed lines). Depending 

on the signaling strength of the feedforward path, perturbation of Y can be under-compensated, 

perfectly-compensated, or over-compensated, leading to partial (Figure 3B), perfect (Figure 3E), 

or over adaptation (Figure 3H), respectively. Correspondingly, the low-dose region of the steady-

state dose-response curve may be monotonically increasing with a small slope (Figure 3C), 

superimposed on the baseline (Figure 3F), or nonmonotonic, i.e., slightly decreasing then 

increasing (Figure 3I). The inflection point, equivalent to a threshold, occurs approximately at a 

stressor level where activation of T or G has reaches their maximal induction. A model 

illustrating how varying feedforward signaling strength produces different degree of adaptation 

and different shapes of dose-response curves in the low-dose region is provided in Supplemental 

Material (see Supplemental Material, Incoherent Feedforward Control). 

Since feedforward control responds to the stressor rather than the state perturbed by the stressor, 

this type of control can be preemptive, capable of responding more quickly to the increased level 

of the stressor. Biological systems still make frequent use of feedforward control, often in 

combination with negative feedback control. An example for cellular stress response is heat 
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shock in E. coli where the thermosensor is the mRNA molecule of transcriptional factor σ32 

(Morita et al. 1999). At normal temperatures, a special hairpin structure at the 5’ end of the 

mRNA molecule blocks efficient translation. At higher temperatures, the hairpin loop opens, 

allowing more efficient protein translation. The subsequent accumulation of σ32 protein induces 

gene expression of heat shock proteins and chaperons to rescue mis-folded proteins accumulated 

owing to heat shock. In combination with negative feedback control, this feedforward control 

mechanism allows faster and more robust adaptation to heat stress (El-Samad et al. 2005). 

Xenobiotic-metabolizing enzyme systems also appear to utilize feedforward control (Zhang et al. 

2009). In the canonical Phase I, II, and III chemical detoxification pathways activated by 

xenobiotics, phase I metabolic enzymes activate parent chemicals to produce reactive 

metabolites. These reactive metabolites can then induce phase II enzymes for their detoxification 

through a negative feedback loop. Importantly, in a feedforward manner, parent xenobiotic 

chemicals may also activate xenosensors such as AhR, CAR and PXR, which directly induce 

phase II enzymes to detoxify reactive metabolites formed by phase I oxidative reactions. These 

feedforward control schemes, i.e., phase I to II cross-induction of xenobiotic-metabolizing 

enzymes, may provide a basis for threshold or hormetic effects observed with some xenobiotic 

chemicals (Zhang et al. 2009). Cells also use transcriptional incoherent feedforward circuits, 

such as those utilizing microRNAs as negative regulators, to achieve adaptation to changes in 

gene dosage (Bleris et al. 2011; Tsang et al. 2007). Recently, Takeda et al, studying the signal 

transduction pathway of eukaryotic chemotaxis, identified incoherent feedforward as the likely 

mechanism for perfect adaptation of Ras protein to activation by chemoattractant cAMP (Takeda 

et al. 2012). Since incoherent feedforward control is not a robust adaptation mechanism by itself, 

it often operates in concert with feedback processes, as in the heat shock response and body 
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temperature  regulation  (El-Samad et  al. 2005; Houk 1988). These  integrated systems  allow  fast, 

preemptive and robust adaptation and homeostasis against various environmental perturbations.      

Bifurcation netw ork motifs  

Biological networks are dynamic systems with multiple interacting components (Tyson et al. 

2003; Zhang et al. 2010a). A biochemical network may have multiple stable steady states, 

representing different cellular outcomes. For example, a precursor cell may switch to a 

differentiated cell type after receiving a transient signal, in which the underlying genetic network 

moves from one stable steady state representing the precursor cell type to another stable steady 

state representing the differentiated cell type. Dynamic networks may change their stability 

behaviors qualitatively over very small changes in the strength of external perturbations (e.g., 

chemical concentration). In nonlinear dynamic theory this process is called a “bifurcation” 

(Strogatz 1994). These “bifurcation points” would be equivalent to thresholds in biological 

systems. The following section introduces three network motifs generating biologically relevant 

bifurcations. 

  Saddle-node bifurcation 

In many nonlinear signaling systems, the signaling elements give rise to discrete steady states. A 

saddle-node bifurcation is made by a network motif that produces abrupt dose-dependent 

transition in a system that can exist in one of two or more stable steady states, i.e., the system is 

capable of bistable or multistable switching. Bistable switching allows cells to undergo 

discontinuous, sometimes irreversible, changes in phenotypic state. Such switches drive 

integrated cellular functions such as cell cycle progression, metabolic switching, lineage 

specification and differentiation (Ozbudak et al. 2004; Verdugo et al. 2013; Xiong and Ferrell 

2003). The network motif structure of a bistable switch (Figure 4A and 4D) consists of a positive 
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or double-negative  feedback loop (Ferrell  2002). Here  G1  and G2  are  two genes/proteins  

mutually activating  or inhibiting  each other;  and  S is an external  agent  perturbing G1. With 

enough signal  amplification  (ultrasensitivity) between G1  and G2, the  self-reinforcing nature  of  a  

positive  or double-negative  feedback loop allows  the  system  to have  two possible  cellular states, 

either fully activated or not  activated at  all. When S  is  small, the  feedback strength is  weak;  so  

G2  remains  at  low  levels.  When S  is  sufficiently large, the  feedback increases  in strength until  it  

becomes  self-sustaining, with  G2  switching  to a  high level  of  expression (Figure  4B and 4E). 

This  behavior allows  perturbations  below  a  threshold to be  filtered out  and supra-threshold 

perturbations  to trigger  switching  to a  new  stable  steady state  with dramatically altered 

expression levels  of  G1  and G2. The  steady-state  dose  response  behavior of  a  bistable  switch is a  

saddle-node  bifurcation that  captures  abrupt, discontinuous  transitions  (Figure  4C and 4F).  The  

thresholds  turning the  cellular switch  on and off  are  not  equal, creating, between them,  a  zone  

where  the  system  can be  either stably on or off. This  phenomenon, where  at  a  given external  

condition, a  system  can reside  in one  of  two available  stable  steady states,  is  known as  

bistability.  A  more  quantitative  explanation of  the  generation of  thresholds  from  saddle-node  

bifurcations  is  provided in Supplemental  Material  (see  Supplemental  Material, Saddle-Node  

Bifurcation).  

The all-or-none nature of a bistable response makes it useful in many cellular processes that 

require binary decisions. Multiple bistable switches composed of positive and double-negative 

feedback loops control progression through various phases of the cell cycle (Verdugo et al. 

2013). With genotoxic chemicals, which produce DNA damage and cause cell cycle arrest, 

sufficiently large amounts of damage appear to act on various cell cycle checkpoints to block the 

underlying bistable switches for cell cycle progression (Tyson et al. 2002). Through 

computational modeling we found that a gene network of coupled double-negative feedback 
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loops  is  likely to be  the  basis  of  a  bistable  switch regulating  terminal  differentiation of  mature  B 

lymphocytes  into antibody-secreting plasma  cells  (Bhattacharya  et  al. 2010). The  environmental  

contaminant  TCDD  appears  to  disrupt  the  bistable  switch triggered by antigens, leading to  all-or-

none  suppression of  B cell  differentiation (Zhang et  al. 2013b). By  perturbing naturally existing 

bistable  switches, many environmental  chemicals  are  likely to produce  threshold responses  

through saddle-node bifurcations.   

  Pitchfork bifurcation 

In a pitchfork bifurcation increasing levels of perturbation cause the motif to move from an 

intermediate-level stable steady state to either a low- or a high-level stable steady state. It likely 

underlies lineage specification where a bipotent progenitor cell, in response to a differentiating 

signal, makes a binary decision on moving to one or another sub-lineage (Huang et al. 2007). 

Balanced double-negative feedback loops can generate pitchfork bifurcations (Ferrell 2012; 

Widder et al. 2007). Unlike the double-negative feedback loop illustrated for saddle-node 

bifurcation (Figure 4D), where the external signal impinges on one gene, this motif has a 

common signal S that equally affects both genes (Figure 5A). At low levels of perturbation by S, 

G1 and G2 rise equally. This balanced state represents a progenitor cell stage. As S drives G1 and 

G2 to further higher levels, the strength of mutual antagonism between G1 and G2 also increases 

creating two new stable steady states: either high G1 / low G2 or high G2 / low G1. Any transient 

asymmetry between the rates of change of G1 and G2 will tilt the intermediate balanced state and 

move the cell to one of the two new stable steady states (Figure 5B and 5D). In the context of 

cell differentiation, the movement to one or the other stable steady state signals a choice of 

lineage specification. This type of phase transition is a supercritical pitchfork bifurcation: the 

system first monotonically increases and then bifurcates into a bistable phase characterized by 
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opposing G1  and G2  levels  (Figure  5C and E).  A mathematical  model  of  pitchfork bifurcation  is 

provided in Supplemental Material (see Supplemental Material, Pitchfork Bifurcation).  

With a balanced network structure, the sub-threshold region of a pitchfork bifurcation can be a 

flat line with no changes. This would require a third gene G3 which is activated by G1 and 

repressed by G2. The two opposing forces upon G3 exactly cancel each other out in regions 

where G1 and G2 are expressed at the same levels. Since sub-threshold levels of S lead to equal 

expression G1 and G2, G3 remains unchanged from its basal level. At the bifurcation point where 

G1 and G2 move in opposite directions, G3 would either increase or decrease, producing a 

pitchfork bifurcation of its own. Its expression profile would be a threshold response with zero 

change in the sub-threshold region. 

Building upon the double-negative feedback loop, a more involved gene network motif arises 

when both genes G1 and G2 positively auto-regulate their own expression, forming two 

additional positive feedback loops. This motif is likely more common than a single double-

negative feedback loop in the context of lineage commitment of bipotent progenitor cells (Huang 

et al. 2007). This modification of the motif structure can create a subcritical pitchfork bifurcation 

with three stable steady states (Foster et al. 2009; Guantes and Poyatos 2008). In theoretical 

models of common myeloid precursor cells choosing between either the erythroid or 

myelomonocytic fate, gene circuits involving GATA1 and PU.1 as mutually repressing 

transcription factors with positive auto-regulation exhibit a subcritical pitchfork bifurcation 

(Huang et al. 2007). A similar pitchfork bifurcation was proposed for gene networks containing 

mutually repressing transcriptional repressors Foxp3 and RORγt. These two proteins underpin 

differentiation of naive CD4+ T cells into T helper 17 cells or induced regulator T cells (Hong et 

al. 2011). Environmental chemicals that target cell differentiating signals (e.g., S in Figure 5A) 
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could potentially  generate  pitchfork bifurcations, thereby producing  thresholds  for 

developmental responses to chemicals.  

 Transcritical bifurcation 

A transcritical bifurcation describes the state transition of a dynamic system where a monostable 

steady state and an unstable steady state coexist and exchange their stability as the level of 

perturbation increases. As the strength of the stimulus increases, the two states move closer to 

each other, coalesce, and then exchange their stability after crossing (Strogatz 1994). Network 

motif structures underlying transcritical bifurcation include positive feedback regulation of 

protein production coupled with nonlinear clearance. In the accompanying example (Figure 6A), 

protein R activates both its own synthesis and degradation. The synthesis rate of R is linearly 

related to its own concentration, and the degradation rate of R is a second-order function of R. At 

low levels of S, the synthesis rate of R is less than its degradation rate, so R always settles to zero 

as the stable steady state. Once S exceeds a critical level, the synthesis rate of R matches the 

degradation rate, creating positive-valued stable steady states (Figure 6B). A transcritical 

bifurcation produces a dose response with threshold (Figure 6C). In a similar manner, 

autocatalysis with reversible reactions also generates transcritical bifurcation and thresholds 

(Figure 6D-6F). Mathematical models of both of these motifs are provided in Supplemental 

Material (see Supplemental Material, Transcritical Bifurcation). 

Model-based studies indicate that positive feedback loop motifs with mutually activating genes, 

protein covalent modification cycles with autocatalysis, and enzymatic cascades produce 

transcritical bifurcations (Aguda 1999; Alam-Nazki and Krishnan 2012; Widder et al. 2007). 

Positive and negative feedback regulation formed between transcription factor E2F and inhibitor 

protein RB may underlie a transcritical bifurcation for the restriction point transition from G0 to 
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G1  in the  cell  cycle  stimulated by  mitogens  (Swat  et  al. 2004).  There  is  also support  for 

transcritical  bifurcation motifs  controlling other cellular processes:  (1) activation of  the  extrinsic  

apoptosis  pathway by TNF  (Albeck et  al. 2008);  (2) the  phase  transition between proliferation 

and extinction of  RNA  virus  in response  to variations  in  RNA  proliferation  mode  and RNA  

strand degradation (Sardanyes  et  al. 2012);  (3) liver damage  induced by HIV  infection (Nampala  

et  al. 2013);  (4) switching of  excitability of  neurons  expressing both restorative  and regenerative  

ion channels  (Franci  et  al. 2013);  and (5) the  transition from  the  quiescent  to persistent  firing 

states in neuronal  networks  when  the  network connectivity exceeds  a  threshold level  (Droste  et  

al. 2013). Environmental  chemicals  perturbing  a  toxicity pathway through a transcritical  

bifurcation would produce threshold dose-response behaviors.  

Ultrasensitive netw ork motifs   

Ultrasensitivity is a common type of nonlinear signal processing in molecular signaling networks 

where a small fractional change in the input generates a much larger fractional change in the 

output. These ultrasensitive motifs often produce sigmoidal dose-response curves (Goldbeter and 

Koshland 1982, 1984). A number of network motifs can generate ultrasensitive responses. They 

include positive cooperative binding, homo-multimerization, multistep signaling, molecular 

titration, zero-order covalent modification cycle, and positive feedback (Zhang et al. 2013a). 

While the outputs of most ultrasensitive motifs are sigmoid, some motifs, including multisite 

phosphorylation (a form of multistep signaling) and molecular titration, may give rise to low-

dose regions that would approximate a threshold response (Buchler and Cross 2009; 

Gunawardena 2005). With molecular titration (Figure 7A), there is a suppressed response in the 

low-dose region because in order to significantly activate gene G the total amount of stimulus S 

has to exceed the total amount of the high-affinity inhibitor R that avidly sequesters S, 

20
 



 

 

  

     

        

       

      

       

        

         

     

      

    

     

        

        

    

      

 

         

         

preventing activation of  G (Figure  7B and 7C). A  model  of  molecular titration producing  near-

threshold  dose  response  is  provided in Supplemental  Material  (see  Supplemental  Material, 

Molecular Titration).  

Molecular titration and multisite phosphorylation/dephosphorylation are very common 

ultrasensitive network motifs. In the hypoxic stress pathway, factor inhibiting HIF (FIH) 

hydroxylates HIF-1α, but also has a range of ankyrin-repeat domain (ARD)-containing proteins 

as substrate (Cockman et al. 2009). The molecular titration of FIH by ARD-containing proteins 

likely determines the threshold, i.e., extent of decreased oxygen tension for activation of HIF-1α 

(Schmierer et al. 2010). Small RNAs, which titrate target mRNAs, may also be responsible for 

some threshold responses in gene and protein expression (Legewie et al. 2008; Lenz et al. 2004; 

Levine et al. 2007; Mehta et al. 2008; Mukherji et al. 2011). Synthetic biology studies that 

engineered high-affinity molecular inhibitors into cellular systems provide clear experimental 

evidence for ultrasensitive threshold response via molecular titration (Buchler and Cross 2009; 

Lee and Maheshri 2012). With respect to multisite phosphorylation or dephosphorylation, 

pathway simulation predicted that activation of transcription factor NFAT1 is ultrasensitive with 

a threshold (Salazar and Hofer 2003). This pathway requires dephosphorylation of 13 serine 

residues by calmodulin-dependent phosphatase calcineurin to activate NFAT1 (Okamura et al. 

2000). Multisite phosphorylation of Cdc25C by Cdk1, two key components involved in cell 

cycle regulation in Xenopus oocytes, also exhibited an ultrasensitive response (Trunnell et al. 

2011). 

Discussion  

Dose response relationships are at the core of quantitative toxicology and chemical risk 

assessment. Determining the shape of dose response curves in the low-dose region to assess 
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evidence  for thresholds  based on statistical  analyses  has  proven difficult  experimentally and  

unattainable  theoretically. Due  to biological  and experimental  variability, a  statistical  threshold 

does  not  necessarily indicate  the  existence  of  a  real  biological  threshold, nor does  a  real  

biological  threshold necessarily lead to an observable  statistical  threshold. Mechanistic  

knowledge  of  relevant  biological  networks  and toxicity pathways  perturbed by chemicals  of  

health concern, as  we  show  here,  will  be  increasingly important  in  providing the  biological  

underpinning for threshold responses.  

Threshold effects can arise from simple network structures, commonly referred to as network 

motifs. We have reviewed a number of network motifs that can underlie biological threshold 

responses at the cellular level. We have described simple mathematical models for the motifs and 

examined their dose response behaviors (Supplemental Material and Figs. 2-7). In addition, we 

evaluated experimental and combined experimental-theoretical work that provided evidence for 

these motifs in specific biological processes. Among the motifs described for homeostasis, 

integral feedback and incoherent feedforward with matching feedforward and perturbation 

strengths produce perfect adaptation with clear-cut, mechanistically definable thresholds. With 

these motifs, there is a particular dose (threshold) below which steady-state responses are 

identical to the non-stressed controls. Some bifurcation network motifs also have well-defined 

thresholds; however, the expected curve shapes in the region near the threshold dose may be 

diverse. Transcritical bifurcations and supercritical pitchfork bifurcations can have flat sub-

threshold behaviors similar to that of integral feedback, and their shapes above the threshold 

dose increase gradually. In contrast, saddle-node bifurcations produce a discontinuous change in 

response at a particular perturbation point. This kind of dose response is reminiscent of true 

switch-like behaviors controlling key cellular phenotype changes. 
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Some network motifs, including proportional feedback loops, incoherent feedforward loops and 

ultrasensitive motifs, generate responses where the sub-threshold response is monotonically 

increasing, but remains very close to the baseline of the control situation. Incoherent feedforward 

loops may also produce hormetic responses if the compensation process, as represented by the 

feedforward signaling strength, is greater than that of perturbation. Many other network 

mechanisms, such as those in steroid hormone signaling, can also produce nonmonotonic 

responses to chemical toxicants (Conolly and Lutz 2004; Kohn and Melnick 2002; Li et al. 

2007). 

The tools described here for understanding network motifs and their dose response properties 

should also be amenable to analysis of integrated networks in which groups of motifs work 

together in parallel or sequential patterns to control coordinated cellular responses. In these 

larger settings, the threshold response of a single protein or gene, especially if the protein is a 

transcription factor, can propagate to regulate coordinated responses that collectively control 

cellular phenotypes. Moreover, for motifs that do not have a perfectly flat sub-threshold 

response, downstream motifs may filter out small changes in the sub-threshold region, thereby 

producing distal cellular responses with clear thresholds. 

Adverse outcome pathways (AOPs) describe the processes from molecular initiating events on 

through toxicity pathways, cellular and organ responses, resulting in apical responses in exposed 

individuals (Ankley et al. 2010; Vinken 2013). Molecular network motifs operating in cells act at 

immediate step in the AOP, propagating the perturbation associated with chemical exposure on 

to higher levels of organization – i.e., the cell, tissue, organ and organism. These motifs sit at the 

toxicity pathway level of the AOP. When early key events (those that are necessary, but not 

sufficient for the adverse outcome) arise through processes that overwhelm these network motifs, 
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threshold responses of the motifs should also propagate into the larger AOP. Due to the 

multiplicity of events in any AOP, the threshold in the apical responses may actually occur at 

higher doses/perturbations than those associated with thresholds in the key network motif. 

Stress pathway function appears to involve both rapid, posttranslational signaling for smaller, 

transient deviations from basal function and slower activation of transcriptional responses for 

more persistent, higher-level stresses (Mettetal et al. 2008). The loss of control corresponds to a 

tipping point and a change from an adaptive response to overt toxicity. More rigorous stress 

pathway evaluations could redirect experimental studies from an insular focus on transcriptional 

programs (Simmons et al., 2009) and give more attention to the rapid posttranslational programs 

that likely maintain cellular homeostasis through integral feedback within the canonical stress 

pathway motifs (Muzzey et al. 2009). The combination of posttranslational and transcriptional 

arms of a coordinated signaling ensemble provides more flexibility in cellular response patterns 

for different intensities and duration of pathway perturbations. In addition to stress pathway 

activation, toxic responses associated with receptor-mediated pathways appear to involve 

activation of cellular programs controlling proliferation or differentiation. Ultrasensitive motifs 

involving feedback processes clearly play roles in these higher-level responses, coordinating 

contributions from suites of individual motifs (Csikasz-Nagy et al. 2006). For example, models 

of platelet derived growth factor signaling through receptor tyrosine kinases and HU-1 signaling 

through GPC-receptor pathways coordinate MAPK cascades and integrated downstream cellular 

responses (Bhalla et al. 2002; Bromberg et al. 2008). 

Putting knowledge of network motifs into practical use for low-dose extrapolations requires an 

understanding of the primary network structure of the toxicity pathway affected by the chemical 

stressor. Some quantitative measures of pathway biomarkers – genes, proteins, etc. – may be 
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needed to determine  the  dominant  interactions  in specific  feedback or feedforward motifs.  With 

this  information in hand, the  structure  of  the  primary network would then support  inferences  

about  expected dose  response  behaviors, including thresholds.  Additional  experimental  data  

might  be  needed to differentiate  possibilities  for specific  variations  of  some  of  the  motifs, for 

example, in distinguishing between proportional  and integral  feedback controls  or among 

feedforward controls  with different  signaling strengths  in the  feedforward arm. Many cellular 

signaling pathways  utilize  combinations  of  motifs. For example, in stress  response  pathways, 

rapid, robust  adaptation often arises  by coupling negative  feedback and incoherent  feedforward 

loops  (El-Samad  et  al. 2005; Zhang et  al. 2009). In these  situations  low-dose  extrapolations  need 

to consider the concerted action of the interconnected network motifs.  

Although the threshold motifs presented here primarily function at the level of intracellular 

molecular networks, the overall concepts will also be applicable to higher-level biological 

hierarchies in which cells, tissues, and organs are the interacting components, which are 

connected by paracrine, endocrine, and neural signals into large-scale biological networks. A 

clear understanding of the network motif context in which biological responses are examined 

will help with predicting the shape of the responses in low-dose regions. Nevertheless, biological 

variability existing among individuals (e.g., individual cells, individual humans, or other 

biological entities) complicates estimation of the shape of dose response curves and the specific 

doses associated with thresholds. These variations will result in heterogeneous responses to 

identical chemical perturbations among individuals. In theory if each individual has a non-zero 

but different threshold for a particular stressor, then the population-averaged response should 

exhibit a threshold comparable to the lowest individual threshold values. The robustness nature 

of biological systems can ensure that healthy individuals respond in a qualitatively similar 

fashion despite large parameter variations in the underlying components (Kitano 2004). 
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However, in a  large  population,  there  could exist  “abnormal”  individuals  who have  no threshold 

or individuals  who have  thresholds  below  background exposure  levels, in which case  the  

population-averaged  response  would show  no threshold. In addition, there  may be  cases  where  

the  perturbations  produced by a  chemical  can add to an existing disease  process.  Such 

considerations  have  led  to the  suggestion  that  thresholds  can only be  defined for individuals  (or 

individual  cells) and that  population heterogeneity will  tend to  linearize  averaged dose  response  

and obscure  threshold (Lutz  1990, 2001; White  et  al. 2009; Zhang et  al. 2010b). Despite  such an 

argument, if  there  is  clear mechanistic  evidence  that  a  normal  individual  does  exhibit  a  threshold 

for a  particular stressor, then it will  be  always  reassuring  in knowing  that  those  who have  

thresholds  above  the  exposed dose  are  fully protected. This  is  a  completely different  risk 

assessment  scenario than the  case  of  a  universal  non-threshold model  where  every individual  will  

face  some  increments  in health risk  at  any exposure  levels. A  better  approach in the  future, as  

being done  slowly but  steadily with personalized medicine, is  to implement  personalized risk 

assessment  by stratifying the  population according to their  individual  threshold levels. To this  

end, understanding the  mechanisms  of  biological  thresholds, as  we  begin here  in this  review, is 

necessary.  

In the future, toxicity testing is likely to rely increasingly on in vitro test results for conducting 

risk and safety assessments (Andersen and Krewski 2010; NRC 2007). Interpretation of these 

tests will rely on understanding of toxicity pathways and the expected shapes of dose response 

curves arising for pathway perturbation by toxic chemicals (Rossini and Hartung 2012). 

Mechanistic cellular toxicity studies should include a greater consideration of the underlying 

network motifs regulating cellular-level responses. Understanding the quantitative aspects of 

network motifs relevant in toxicity pathway perturbations will be an integral component for these 

cell-based dose-response assessments and for training future toxicologists. The inclusion of more 
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mechanistically  oriented thinking into  conventional  cellular and molecular toxicology curricula  

is necessary for a better appreciation of cellular-level dose-response behaviors.   
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Figure Legends  

Figure 1. Schematics of dose-response curves at low doses. (A) This dose-response curve has 

a small non-zero slope in the low-dose region before increasing significantly at higher doses. (B) 

This threshold dose-response curve remains flat in the low-dose region and increases 

significantly once S exceeds the threshold. (C) In this hormetic dose-response curve the slope 

first decreases and then increases in the low-dose region. The identical hypothetical data points 

(open circles) are overlaid on all three panels. 

Figure 2. Negative Feedback Motifs. (A) Schematic of a proportional feedback control motif to 

counter cellular stress. (B) With high loop signal amplification, proportional feedback produces 

near-perfect adaptation, where Y settles asymptotically close to the baseline (i.e., the dashed line 

for S=0). (C) Proportional feedback produces steady-state dose response curves where the low-

dose region is very close to the baseline. (D) Schematic of an integral feedback control motif to 

counter cellular stress. (E) Within stressor limits, integral feedback produces perfect adaptation, 

i.e., Y settles back exactly to the baseline. (F) Integral feedback produces well-defined 

thresholds for the steady-state response where the low-dose region overlaps with the baseline. 

For panels (A) and (D), solid arrow heads denote activation and blunted arrow heads denote 

inhibition. Same denotations for other motif structure figures. For panels (B) and (E), 

increasingly darker red lines correspond to S=0.3, 0.6, 0.9, and 1.2. For panels (C) and (F), small 

arrows indicate steady-state responses of Y associated with the above set of S levels. 

Figure 3. Incoherent Feedforward Motifs. (A) Schematic of an incoherent feedforward motif 

with feedforward signaling (S à T à G ─| Y) strength that is smaller than the perturbation (S 

à Y) strength. (B-C) Smaller feedforward signaling gain leads to partial adaptation and greatly 

limits the steady-state increases in Y in the low-dose region. (D) Schematic of an incoherent 
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feedforward motif with feedforward signaling strength equal to perturbation strength.  (E-F) 

Matching feedforward signaling strength leads to perfect adaptation   and well-defined thresholds 

for the steady- state response. (G)  Schematic of an incoherent feedforward motif with 

feedforward signaling strength greater than perturbation strength. (H-I) Greater feedforward 

signaling strength leads to over-adaptation and hormetic steady-state response. For panels (B),    

(E), and (H), increasingly darker red lines  correspond to S=0.3, 0.6, 0.9, and 1.2. For panels (C),  

(F), and (I), small arrows indicate steady-state responses of Y associated with the above set of S  

levels.  

Figure 4. Saddle-Node Bifurcation Motifs. (A) Schematic of a two-gene positive feedback 

system in which S activates G1. (B) Depending on the level of S, expression of gene G2 settles to 

either high or low levels. (C) The saddle-node bifurcation of G2 shows the steady-state dose 

response of G2 to S. (D) Schematic of a two-gene double-negative feedback system in which S 

inhibits G1. (E) Depending on the level of S, expression of G2 settles to either high or low levels. 

(F) The saddle-node bifurcation of G2 shows the steady-state dose response of G2 to S. For 

panels (B) and (E), increasingly darker red lines correspond to S= 0.6, 0.9, 1.2, 1.5, and 1.8, 

where lines for S=0.6 and S=0.9 overlap. For panels (C) and (F), small arrows indicate steady-

state responses of G2 associated with the above set of S levels; dashed red lines with arrows 

define the on- and off-thresholds that delimit the bistable zone; dashed blue lines denote unstable 

steady states. 

Figure 5. Supercritical Pitchfork Bifurcation Motif.   (A)  Schematic of a symmetrical   two-gene  

system in which genes G  1  and G2  mutually repress each other and S equally activates both G1  

and G2. (B)  Dynamic (i.e., time-dependent) response of G1  to various levels of S. (C)  

Supercritical pitchfork bifurcation of G1  exhibits an abrupt transition in the steady-  state dose  
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response.  (D)  Dynamic response of G2  to various levels of S. (E)  Supercritical pitchfork 

bifurcation of G2. For panels (B) and (D), initial value of G1  is set at 1.01 and initial value of G2  

is set at 1.0 to introduce slight asymmetry; increasingly darker red lines  correspond  to  S = 0.6,  

0.9, 1.2, 1.5, and 1.8. For panels (C) and (E), small arrows indicate steady-state responses of G1  

and G2  associated with the above set of S levels, respectively; dashed blue lines denote unstable   

steady  states.  

Figure 6. Transcritical Bifurcation Motifs. (A) Schematic of a motif where protein R promotes 

both its own synthesis and degradation. (B) Dynamic response of R to various levels of S. (C) 

Transcritical bifurcation of R produces a perfect steady-state threshold response. (D) Schematic 

illustration of an autocatalysis motif. (E) Dynamic response of R* to various levels of S. (F) 

Transcritical bifurcation of R* produces a perfect steady-state threshold response. For panels (B) 

and (E), increasingly darker red lines correspond to S = 0.6, 0.9, 1.2, 1.5, and 1.8, where lines for 

S=0.6 and S=0.9 overlap. For panels (C) and (F), small arrows indicate steady-state responses of 

R and R* associated with the above set of S levels respectively, and dashed blue lines denote 

unstable steady states (note the exchange of stability at the intersections). 

Figure 7. An Example of an Ultrasensitive Motif. (A) Schematic of a molecular titration motif 

where R sequesters S, reducing the ability of free S to induce gene G. (B) Dynamic response of 

G to various levels of total S. Increasingly darker red lines correspond to total S = 0.6, 0.9, 1.2, 

1.5, and 1.8, where lines for S=0.6 and S=0.9 overlap. (C) Though not a perfect threshold 

response, the steady-state response of G to total S level increases abruptly as total S increases 

above R. Small arrows indicate steady-state responses of G associated with above S levels; 

dashed line denotes baseline. 
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